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The dominant occurrence of the b ¼ að001Þ prismatic edge dislocation loops in iron and iron-based alloys
irradiated at temperatures approaching 500 �C is a striking anomaly distinguishing iron and its alloys
from other bcc metals. It is surprising that the að001Þ dislocation loops form at all, since there is an alter-
native b ¼ a=2ð111Þ dislocation loop configuration that, according to the conventional isotropic treat-
ment of elasticity, has a lower self-energy. In this paper we highlight the magnetic aspect of the
problem and note the fundamental link between the a—c phase transition, the elastic anisotropy of iron,
which is particularly significant at elevated temperatures, and thermal magnetic fluctuations.

Crown Copyright � 2009 Published by Elsevier B.V. All rights reserved.
1. Introduction

The frequent occurrence of the b ¼ að001Þ prismatic edge dislo-
cation loops in bcc iron and iron-based alloys irradiated at high
temperatures is one of the most surprising phenomena in the field
of radiation damage of materials [1–4]. It is very unusual that the
að001Þ loops form at all, since there is an alternative b ¼ a=2ð111Þ
loop configuration that, according to the conventional isotropic
treatment of elasticity, has a lower self-energy.

In this paper, we argue that this high-temperature radiation
damage anomaly has magnetic origin.

Magnetism has important implications for the structural stabil-
ity of iron-based alloys and steels. The equilibrium structure of
atomic configurations depends sensitively on magnetic ordering
in the case where the magnetic energy and the difference between
energies of competing crystal structures are comparable. Hase-
gawa and Pettifor [5] showed that magnetism stabilizes the
body-centred cubic (bcc) a-phase of iron at low temperatures. This
assertion is supported by density functional calculations [6] show-
ing that the energy per atom in the non-magnetic or in the antifer-
romagnetic bcc phases of iron is higher than the energy of any of
the fcc phases. Thermal magnetic fluctuations are responsible for
the phase transition from the bcc a to the fcc c phase occurring
approximately at 912 �C.

As a precursor for this structural phase transformation, iron and
iron-based alloys exhibit gradual softening of the stiffness constant
c0 ¼ ðc11 � c12Þ=2 that, according to experimental measurements
[7,8], decreases by a factor of three between the room temperature
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and 800 �C. Such a strong variation of c0 affects the energy of inter-
action between dislocations, as well as the self-energies of disloca-
tion loops in iron and iron-based alloys. This has a profound effect
on the mechanical properties [9]. The strong temperature depen-
dence of stiffness constants of iron looks particularly striking in
comparison with the case of non-magnetic bcc metals, where no
significant variation of stiffness constants is observed over the
same interval of temperatures [10].

The effect of softening of c0 in the vicinity of the a—c phase
transition cannot in principle be described using the ‘conventional’
isotropic treatment of elasticity, where the elastic properties are
characterized by only two independent parameters, such as the
shear and the bulk moduli, or the Young modulus E and the Poisson
ratio r [11]. To prove this we note that in the isotropic elasticity
approximation, for any choice of these two parameters, the spec-
trum of elastic acoustic waves described by the wave equation

q€ul ¼
E

2ð1þ rÞ
@2

@x2
i

ul þ
E

2ð1þ rÞð1� 2rÞ
@2
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where q is the mass density of the material, consists of one longitu-
dinal and two transverse modes with group velocities

cl ¼
Eð1� rÞ

qð1þ rÞð1� 2rÞ

� �1=2

ð1Þ

and

cð1;2Þt ¼ E
2qð1þ rÞ

� �1=2

:

These velocities are independent of the direction of propagation of
waves through the lattice, and none of them vanishes for any
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mailto:sergei.dudarev@ukaea.org.uk
http://www.sciencedirect.com/science/journal/00223115
http://www.elsevier.com/locate/jnucmat


46 S.L. Dudarev et al. / Journal of Nuclear Materials 386–388 (2009) 45–48
reasonable choice of E and r. For example, in the isotropic elasticity
approximation we do not find the remarkable kkð110Þ ekð1 �10Þ
phonon mode [12] that softens near the a—c phase transition tem-
perature, providing the pathway for the bcc/fcc structural transfor-
mation. This argument shows that the isotropic elasticity
approximation is not suitable for modelling iron and iron-based al-
loys anywhere in the vicinity of the a—c phase transition
temperature.

Now we present an argument suggesting that magnetic fluctu-
ations may explain the strong variation of stiffness parameters of
iron as a function of temperature, and discuss the implication of
the observed elastic softening of iron for the relative stability of
dislocation loops. Starting from a tight-binding Hamiltonian for-
malism that includes only the on-site Coulomb interactions, we de-
rive a many-body Stoner Hamiltonian originally postulated in Ref.
[12], and develop a qualitative argument showing that strong tem-
perature dependence of forces acting between atoms can emerge
on the timescale comparable to the timescale of atomic vibrations.
We conclude by assessing the effect of elastic softening on the free
self-energies of dislocations and dislocation loops [4] and show
that this explains the observed occurrence of the b ¼ að001Þ dislo-
cation loops in iron and iron-based alloys at elevated
temperatures.
2. The magnetic tight-binding Hamiltonian

In the tight-binding approximation the many-body quantum
Hamiltonian for d-electrons in a transition metal has the form
[13,14]

bH ¼X
i;j;i–j

X
m;m0 ;r

tim;jm0 ĉ
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Here the t-term is the operator of kinetic energy of electrons asso-
ciated with hopping between d-orbitals situated on sites i and j, �i is
the single-particle on-site energy, and the third and fourth terms
represent interaction between electrons. bH 0 completes the Hamilto-
nian by adding the contribution of the nearly-free-electron s–p
band. This latter term plays a significant part only at short distances
between atoms.

Hamiltonian (2) contains several terms describing interatomic
interactions in a transition metal. The first is related to the forma-
tion of chemical bonds due to the hybridization of atomic d-orbi-
tals. These bonds are described by the t-terms in (2). A hopping
(hybridization) matrix element tim;jm0 involves an orbital m cen-
tered on site i, and an orbital m0 centered on site j.

A term in Hamiltonian (2), which until recently received no
attention in connection with the semi-empirical treatment of
interatomic interactions, is the term describing electron-electron
interactions and magnetism. It is well known that the Hubbard
U-term suppresses hopping of electrons and hence weakens chem-
ical bonding in a material [15]. This was also noted in connection
with the treatment of interatomic cohesion in the LSDA+U model
[14]. The on-site interaction between electrons is described by
the term in square brackets in (2). Parameter U is the Coulomb en-
ergy of repulsion between a pair of electrons with antiparallel
spins occupying the same lattice site, and J characterizes the
strength of intra-atomic exchange between electrons. The on-site
interaction part of the Hamiltonian can also be written as
bHi ¼ U
X
m;m0

n̂im"n̂im0#

þ ðU � JÞ
2

X
m;m0 ;m–m0

½n̂im"n̂im0" þ n̂im#n̂im0#�: ð3Þ

The second term in (3) vanishes completely for the case of s-elec-
trons (or, in other words, in the case of a single band Hubbard mod-
el). In this case there is only one tight-binding orbital per lattice site,
m ¼ m0 ¼ 0, and no possibility remains for the intra-atomic Cou-
lombic exchange interaction.

Hamiltonian (3) can be simplified further by introducing the
operator of the total number of electrons occupying a lattice sitebNi ¼ bNi" þ bNi# and the operator of the total magnetic momentbMi ¼ bNi" � N̂i#. Using these operator notations, we simplify (3) as
[16]

bHi ¼
U
2
ðbN2

i � bNiÞ �
J
4
ðbN2

i � 2bNiÞ �
J
4
bM2

i : ð4Þ

There are two types of terms in this Hamiltonian. The terms that de-
pend on bNi describe fluctuations of energy due to fluctuations of the
total number of electrons on a given lattice site. On the other hand,
the term �J bM2

i =4 lowers the energy by forming a non-zero mag-
netic moment on the site, in accord with Hund’s rule. If we neglect
fluctuations of the total number of electrons on a site (in which case
the expectation value of bNi is kept constant for example by the
charge neutrality condition) and appropriately adjust the on-site
energies �i to satisfy this condition, we arrive at the Stoner Hamil-
tonian [12]

bHStoner ¼
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y
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where we identified J with the Stoner parameter I. Due to the oper-
ator form of the magnetic Stoner term, this Hamiltonian is expected
to be of similar complexity to the Hubbard Hamiltonian [17]. At the
same time the physical picture described by the Stoner Hamiltonian
(5) is completely different to that of the Hubbard Hamiltonian. The
derivation given above shows that the Stoner parameter I in Eq. (5)
describes intra-atomic exchange. This term bears no relation to the
direct Coulomb interaction between electrons described by the U-
term in a simple s-band-type Hubbard model [17].
3. The temperature-dependent interatomic forces

What is the functional form of the expectation value of Stoner
Hamiltonian (5)? Consider a trial wave function W describing an
electronic configuration for an arbitrary set of coordinates of atoms
R1; . . . ;RN , and a corresponding set of expectation values of local
magnetic moments M1; . . . ;MN . The Stoner Hamiltonian (5) is qua-
dratic in bMi and is invariant with respect to the rotation of the
direction of quantization of magnetic moments. Hence the expec-
tation value of energy hWjbHStonerjWi also has to be invariant with re-
spect to the choice of direction of this axis. A sufficiently general
form of a function of coordinates of atoms and magnetic moments
that satisfies this condition is

EðR1; . . . ;RN; M1; . . . ;MNÞ ¼ hWjbHStonerjWi
¼ Eð0ÞðR1; . . . ;RNÞ
þ
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Fig. 1. Ratio of pre-logarithmic factors (10) for straight b ¼ a½001�, b ¼ a=2½111�
edge dislocations evaluated, in the anisotropic elasticity approximation, for several
bcc metals as described in the text. In the isotropic elasticity approximation this
ratio is independent of the orientation of the tangent vector of the dislocation line
and equals 1:3333 . . .. For tungsten, which is nearly elastically isotropic, this ratio is
very close to 4/3 = 1.333. . ..
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This expansion contains an infinite number of terms involving even
powers of magnetic moments, as well as scalar products of mo-
ments associated with different lattice sites.

By minimizing the energy EðR1; . . . ;RN; M1; . . . ;MNÞwith respect
to the magnitude of magnetic moments jM1j; jM2j; . . . ; jMNj (this
minimization only requires redistributing electrons between the
spin states within each atom, and it does not interfere with the lo-
cal charge neutrality condition), we arrive at a general formula for
the energy of a system of atoms, which is invariant with respect to
the choice of the direction of quantization axis for magnetic mo-
ments, and is characterized by the positions of atoms R1; . . . ;RN

and the directions of unit vectors of magnetic moments
e1; . . . ; eN , namely

EðR1; . . . ;RN ; e1; . . . ; eNÞ

¼ UðR1; . . . ;RNÞ �
1
2

X
i–j

JijðR1; . . . ;RNÞei � ej þ . . . ð7Þ

Functions UðR1; . . . ;RNÞ and JijðR1; . . . ;RNÞ depend on the positions
of atoms and parameters of the Stoner Hamiltonian (5). In prin-
ciple they can be evaluated using a suitable approximation for
the trial wave function W, or the Green’s functions formalism.
In a ferromagnetic configuration, where all the moments are par-
allel to each other, and where ei � ej ¼ 1 for all i and j, energy (7)
depends only on coordinates of atoms, and is subject to a con-
straint that the magnitude of each magnetic moment is deter-
mined by the condition that the total energy (6) is minimum.
This limiting case of a ferromagnetically ordered (but geometri-
cally arbitrarily distorted) atomic configuration was investigated
in Refs. [18,19] and led to the development of a ‘magnetic’ inter-
atomic potential.

In principle, both coordinates of atoms and the directions of
magnetic moments can be treated as dynamical variables [20,21].
We will not discuss this here and instead consider, in qualitative
terms, the effect of thermal fluctuations of magnetic moments on
the forces acting between atoms in a magnetic transition metal.
Replacing the product ei � ej by the correlation function of direc-
tions of magnetic moments

nijðR1; . . . ;RN; TÞ ¼ hei � ejiT ¼ lim
t!1

1
t

Z t

0
eiðt0Þ � ejðt0Þdt0; ð8Þ

we find the average force acting on atom k

Fk ¼ �
@
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þ 1
2

@
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X
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This equation illustrates the fundamental difference between forces
acting between atoms in a magnetic and in a non-magnetic metal.
Eq. (9) shows that forces acting between ‘magnetic’ atoms explicitly
depend on temperature due to the temperature dependence of the
correlation function of magnetic moments nijðR1; . . . ;RN; TÞ ¼
hei � ejiT . The directions of magnetic moments fluctuate and hence
forces acting between the atoms in a magnetic metal for the same
set of coordinates R1; . . . ;RN are not the same for any two different
temperatures of the spin subsystem [20,21]. The higher-order
derivatives of the total energy, like stiffness constants, should also
be expected to exhibit unusual dependence on temperature in com-
parison with the non-magnetic case, where the temperature depen-
dence of interatomic forces originates from the non-harmonicity of
interatomic potentials [22]. It is such a dependence that should ex-
plain the fairly strong variation of stiffness constants with temper-
ature observed experimentally [7,8].
4. The temperature-dependent self-energies of dislocations

To provide an example illustrating the effect of variation of
stiffness constants as a function of temperature on properties of
materials, we consider the effect of this temperature variation on
the elastic free self-energies of dislocations in bcc iron. In the
anisotropic treatment of elasticity, the pre-logarithmic free energy
factor of a straight dislocation with Burgers vector b and the
tangent vector t in an infinite anisotropic medium is [23]

bF ðtÞ ¼ 1
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where for an edge dislocation jg ¼mþ nxðgÞ, n ¼ b=b, m ¼ n� t,
and xð1Þ, xð2Þ and xð3Þ are the three complex roots of the sextic
equation

SðxÞ ¼ det cijklðmj þ njxÞðml þ nlxÞ
� �

¼ 0; ð11Þ

situated in the upper half of the complex plane x ¼ Rxþ iIx.
NikðjÞ is a matrix adjoint to LikðjÞ ¼ cijkljjjl, and DðjÞ ¼ det LikðjÞ.
Here cijkl is the tensor of temperature-dependent stiffness constants
that in a crystal of cubic symmetry has 21 non-zero components

cijkl ¼ c12dijdkl þ c44 dikdjl þ dildjk
� �

þ ðc11 � c12 � 2c44Þdijdikdil: ð12Þ

The elastic self-energy of an edge dislocation depends on its orien-
tation vector t. Fig. 1 shows the ratio of pre-logarithmic factors eval-
uated for straight b ¼ að001Þ and b ¼ a=2ð111Þ edge dislocations
plotted as a function of the angle between the direction t of the dis-
location line, and one of the directions where this elastic energy is
minimum (these directions are ½100� for the b ¼ að001Þ dislocation
and ½11 �2� for the b ¼ a=2ð111Þ dislocation). With the exception of
tungsten, the curves shown in Fig. 1 systematically deviate from the
isotropic elasticity limit, where the ratio of the two energies equals
the square of the ratio b2

001=b2
111 ¼ 4=3. Fig. 1 shows that iron be-

comes increasingly elastically more anisotropic as temperature ap-
proaches the temperature of the bcc–fcc transition TC ¼912 �C. We
note that experimental values of the elastic constants were used for
all materials and temperatures. The curves shown in Fig. 1 also sug-
gest that the elastic self-energy of að001Þ edge dislocations de-
creases faster as a function of temperature than the energy of the
a=2ð111Þ dislocations. To investigate this, in Fig. 2 we plotted the
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Fig. 2. The leading pre-logarithmic terms (10) in the elastic free energy for straight
b ¼ ða=2Þ½111�; t ¼ ð1=

ffiffiffi
6
p
Þ½11 �2� or t ¼ ð1=

ffiffiffi
2
p
Þ½1 �1 0�, and b ¼ ½001�; t ¼ ½100� or

t ¼ ð1=
ffiffiffi
2
p
Þ½1 10� edge dislocations evaluated as a function of T near the temperature

TC of the a—c phase transition. The two lowest energy curves intersect approx-
imately at 820 �C. Note that the treatment does not include the contribution of the
dislocation core energy terms.
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temperature-dependent pre-logarithmic self-energy factors evalu-
ated for the two types of dislocations using values of stiffness con-
stants found by interpolating the experimental values towards the
transition temperature TC . We have taken into account the fact that
since the bcc–fcc transformation follows the Bain pathway, the stiff-
ness constant c0 ¼ ðc11 � c12Þ=2 is expected to vanish at or near the
transition temperature TC . The curves shown in Fig. 2 suggest that
the free self-energy of the b ¼ að100Þ½001� edge dislocation de-
creases more sharply near the a—c transition temperature than
the free self-energy of the b ¼ a=2ð111Þ½11 �2� edge dislocation.
The elastic free self-energies of dislocations with the same Burgers
vectors but different line orientations do not exhibit significant
temperature variation near TC . This analysis, as well as the results
of a full investigation addressing the dislocation core energy terms
as well as the effect of the shape and the size of dislocation loops
[4], suggests that the effect of softening of the stiffness constant c0

on the elastic free self-energies of dislocations and dislocation loops
near the temperature of the a—c phase transition provides the
likely explanation for the observed frequent occurrence of the
square-shaped b ¼ að001Þ prismatic dislocation loop configura-
tions at elevated temperatures in bcc iron.
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